If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-106=0
a = 4; b = 0; c = -106;
Δ = b2-4ac
Δ = 02-4·4·(-106)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{106}}{2*4}=\frac{0-4\sqrt{106}}{8} =-\frac{4\sqrt{106}}{8} =-\frac{\sqrt{106}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{106}}{2*4}=\frac{0+4\sqrt{106}}{8} =\frac{4\sqrt{106}}{8} =\frac{\sqrt{106}}{2} $
| (5x-6)=89+57=180 | | 2(3x+1)-2(x-5)=8 | | (2x-3)(6x+9)=-3 | | 3x+20=12(2x-3) | | 5x^2-36x-233=0 | | 3/4y+7/2/5y-4=4/5 | | 14t=11t= | | 5y-7y=-2y | | 3^x+3^x=162 | | x+6+x=29 | | (0.5x-4)/(2.4x+6)=-5/3 | | 12x-17=9x-5 | | x(5+x)+x(12-x)=51 | | -1.5=4x+-4.9x^2 | | 360=2.5x*x | | 8x-14+16x+15=39 | | 6+6x6=x | | 234/x=22 | | 2(3w+1)/4=4 | | F(5)=4x^2+3 | | 6x+36-144=0 | | 48r^2-120r+48=0 | | a/0.024=4.8 | | y/5.9=0 | | 11x-23=x^2+1 | | -7d-19=-68 | | 4x+11/6=-25 | | 34-5r=-3+7(1-5r) | | 8x-2+9x-14=180 | | 3x+4=7-(x+17) | | 45^2=36^2+b^2 | | 1/64=2^-x-10 |